论文标题

部分可观测时空混沌系统的无模型预测

Qualitative analysis for Moser-Trudinger nonlinearities with a low energy

论文作者

Luo, Peng, Pan, Kefan, Peng, Shuangjie

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We are concerned with the Moser-Trudinger problem \begin{equation*} \begin{cases} -Δu=λue^{u^2}~~&\mbox{in}~Ω,\\[0.5mm] u>0 ~~ &{\text{in}~Ω},\\[0.5mm] u=0~~&\mbox{on}~\partial Ω, \end{cases} \end{equation*} where $Ω\subset \mathbb{R}^2$ is a smooth bounded domain and $λ>0$ is sufficiently small. Qualitative analysis for Moser-Trudinger nonlinearities has been studied in recent decades, however there is still a lot of clarity about this issue, even for a low energy. The reason is that this problem is a critical exponent for dimension two and will lose compactness. Here by using a variety of local Pohozaev identities, we qualitatively analyze the positive solutions of Moser-Trudinger problem with a low energy, which contains the Morse index, non-degeneracy, asymptotic behavior, uniqueness and symmetry of solutions. Since the fundamental solution of $-Δ$ in $Ω\subset \mathbb{R}^2$ is in logarithmic form and the corresponding bubble is exponential growth, more precise asymptotic behavior of the solutions is needed, which is of independent interest. Moreover, to obtain our results, some ODE's theory will be used to a prior estimate of the solutions and some elliptic theory in dimension two will play a crucial role.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源