论文标题

部分可观测时空混沌系统的无模型预测

Improved microgrid resiliency through distributionally robust optimization under a policy-mode framework

论文作者

Nazir, Nawaf, Ramachandaran, Thiagarajan, Kundu, Soumya, Adetola, Veronica

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Critical energy infrastructure are constantly understress due to the ever increasing disruptions caused by wildfires, hurricanes, other weather related extreme events and cyber-attacks. Hence it becomes important to make critical infrastructure resilient to threats from such cyber-physical events. Such events are however hard to predict and numerous in nature and type, making it infeasible to become resilient to all possible cyber-physical event as such an approach would make the system operation overly conservative. Furthermore, distributions of such events are hard to predict and historical data available on such events is sparse. To deal with these issues, we present a policy-mode framework that enumerates and predicts the probability of various cyber-physical events on top of a distributionally robust optimization (DRO) that is robust to the sparsity of the available historical data. The proposed algorithm is illustrated on an islanded microgrid example: a modified IEEE 123-node feeder with distributed energy resources (DERs) and energy storage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源