论文标题
部分可观测时空混沌系统的无模型预测
A dichotomous behavior of Guttman-Kaiser criterion from equi-correlated normal population
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider a $p$-dimensional, centered normal population such that all variables have a positive variance $σ^2$ and any correlation coefficient between different variables is a given nonnegative constant $ρ<1$. Suppose that both the sample size $n$ and population dimension $p$ tend to infinity with $p/n \to c>0$. We prove that the limiting spectral distribution of a sample correlation matrix is Marčenko-Pastur distribution of index $c$ and scale parameter $1-ρ$. By the limiting spectral distributions, we rigorously show the limiting behavior of widespread stopping rules Guttman-Kaiser criterion and cumulative-percentage-of-variation rule in PCA and EFA. As a result, we establish the following dichotomous behavior of Guttman-Kaiser criterion when both $n$ and $p$ are large, but $p/n$ is small: (1) the criterion retains a small number of variables for $ρ>0$, as suggested by Kaiser, Humphreys, and Tucker [Kaiser, H. F. (1992). On Cliff's formula, the Kaiser-Guttman rule and the number of factors. Percept. Mot. Ski. 74]; and (2) the criterion retains $p/2$ variables for $ρ=0$, as in a simulation study [Yeomans, K. A. and Golder, P. A. (1982). The Guttman-Kaiser criterion as a predictor of the number of common factors. J. Royal Stat. Soc. Series D. 31(3)].