论文标题
部分可观测时空混沌系统的无模型预测
SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Optimization problems with nonlinear cost functions and combinatorial constraints appear in many real-world applications but remain challenging to solve efficiently compared to their linear counterparts. To bridge this gap, we propose $\textbf{SurCo}$ that learns linear $\underline{\text{Sur}}$rogate costs which can be used in existing $\underline{\text{Co}}$mbinatorial solvers to output good solutions to the original nonlinear combinatorial optimization problem. The surrogate costs are learned end-to-end with nonlinear loss by differentiating through the linear surrogate solver, combining the flexibility of gradient-based methods with the structure of linear combinatorial optimization. We propose three $\texttt{SurCo}$ variants: $\texttt{SurCo}-\texttt{zero}$ for individual nonlinear problems, $\texttt{SurCo}-\texttt{prior}$ for problem distributions, and $\texttt{SurCo}-\texttt{hybrid}$ to combine both distribution and problem-specific information. We give theoretical intuition motivating $\texttt{SurCo}$, and evaluate it empirically. Experiments show that $\texttt{SurCo}$ finds better solutions faster than state-of-the-art and domain expert approaches in real-world optimization problems such as embedding table sharding, inverse photonic design, and nonlinear route planning.