论文标题
部分可观测时空混沌系统的无模型预测
Asymptotically compatible energy of variable-step fractional BDF2 formula for time-fractional Cahn-Hilliard model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A new discrete energy dissipation law of the variable-step fractional BDF2 (second-order backward differentiation formula) scheme is established for time-fractional Cahn-Hilliard model with the Caputo's fractional derivative of order $α\in(0,1)$, under a weak step-ratio constraint $0.4753\le τ_k/τ_{k-1}<r^*(α)$, where $τ_k$ is the $k$-th time-step size and $r^*(α)\ge4.660$ for $α\in(0,1)$.We propose a novel discrete gradient structure by a local-nonlocal splitting technique, that is, the fractional BDF2 formula is split into a local part analogue to the two-step backward differentiation formula of the first derivative and a nonlocal part analogue to the L1-type formula of the Caputo's derivative. More interestingly, in the sense of the limit $α\rightarrow1^-$, the discrete energy and the corresponding energy dissipation law are asymptotically compatible with the associated discrete energy and the energy dissipation law of the variable-step BDF2 method for the classical Cahn-Hilliard equation, respectively. Numerical examples with an adaptive stepping procedure are provided to demonstrate the accuracy and the effectiveness of our proposed method.