论文标题
部分可观测时空混沌系统的无模型预测
Learning Point-Language Hierarchical Alignment for 3D Visual Grounding
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper presents a novel hierarchical alignment model (HAM) that learns multi-granularity visual and linguistic representations in an end-to-end manner. We extract key points and proposal points to model 3D contexts and instances, and propose point-language alignment with context modulation (PLACM) mechanism, which learns to gradually align word-level and sentence-level linguistic embeddings with visual representations, while the modulation with the visual context captures latent informative relationships. To further capture both global and local relationships, we propose a spatially multi-granular modeling scheme that applies PLACM to both global and local fields. Experimental results demonstrate the superiority of HAM, with visualized results showing that it can dynamically model fine-grained visual and linguistic representations. HAM outperforms existing methods by a significant margin and achieves state-of-the-art performance on two publicly available datasets, and won the championship in ECCV 2022 ScanRefer challenge. Code is available at~\url{https://github.com/PPjmchen/HAM}.