论文标题

部分可观测时空混沌系统的无模型预测

SynGEC: Syntax-Enhanced Grammatical Error Correction with a Tailored GEC-Oriented Parser

论文作者

Zhang, Yue, Zhang, Bo, Li, Zhenghua, Bao, Zuyi, Li, Chen, Zhang, Min

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This work proposes a syntax-enhanced grammatical error correction (GEC) approach named SynGEC that effectively incorporates dependency syntactic information into the encoder part of GEC models. The key challenge for this idea is that off-the-shelf parsers are unreliable when processing ungrammatical sentences. To confront this challenge, we propose to build a tailored GEC-oriented parser (GOPar) using parallel GEC training data as a pivot. First, we design an extended syntax representation scheme that allows us to represent both grammatical errors and syntax in a unified tree structure. Then, we obtain parse trees of the source incorrect sentences by projecting trees of the target correct sentences. Finally, we train GOPar with such projected trees. For GEC, we employ the graph convolution network to encode source-side syntactic information produced by GOPar, and fuse them with the outputs of the Transformer encoder. Experiments on mainstream English and Chinese GEC datasets show that our proposed SynGEC approach consistently and substantially outperforms strong baselines and achieves competitive performance. Our code and data are all publicly available at https://github.com/HillZhang1999/SynGEC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源