论文标题

部分可观测时空混沌系统的无模型预测

The Euler characteristic, $q$-matroids, and a Möbius function

论文作者

Johnsen, Trygve, Pratihar, Rakhi, Randrianarisoa, Tovohery Hajatiana

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We first give two new proofs of an old result that the reduced Euler characteristic of a matroid complex is equal to the Möbius number of the lattice of cycles of the matroid up to the sign. The purpose has been to find a model to establish an analogous result for the case of $q$-matroids and we find a relation between the Euler characteristic of the simplicial chain complex associated to a $q$-matroid complex and the lattice of $q$-cycles of the $q$-matroid. We use this formula to find the complete homology over $\mathbb{Z}$ of this shellable simplicial complex. We give a characterization of nonzero Euler characteristic for such order complexes. Finally, based on these results we remark why singular homology of a $q$-matroid equipped with order topology may not be effective to describe the $q$-cycles unlike the classical case of matroids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源