论文标题
部分可观测时空混沌系统的无模型预测
Learning Classifiers for Imbalanced and Overlapping Data
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This study is about inducing classifiers using data that is imbalanced, with a minority class being under-represented in relation to the majority classes. The first section of this research focuses on the main characteristics of data that generate this problem. Following a study of previous, relevant research, a variety of artificial, imbalanced data sets influenced by important elements were created. These data sets were used to create decision trees and rule-based classifiers. The second section of this research looks into how to improve classifiers by pre-processing data with resampling approaches. The results of the following trials are compared to the performance of distinct pre-processing re-sampling methods: two variants of random over-sampling and focused under-sampling NCR. This paper further optimises class imbalance with a new method called Sparsity. The data is made more sparse from its class centers, hence making it more homogenous.