论文标题
部分可观测时空混沌系统的无模型预测
Coverings of planar and three-dimensional sets with subsets of smaller diameter
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Quantitative estimates related to the classical Borsuk problem of splitting set in Euclidean space into subsets of smaller diameter are considered. For a given $k$ there is a minimal diameter of subsets at which there exists a covering with $k$ subsets of any planar set of unit diameter. In order to find an upper estimate of the minimal diameter we propose an algorithm for finding sub-optimal partitions. In the cases $10 \leqslant k \leqslant 17$ some upper and lower estimates of the minimal diameter are improved. Another result is that any set $M \subset \mathbb{R}^3$ of a unit diameter can be partitioned into four subsets of a diameter not greater than $0.966$.