论文标题
部分可观测时空混沌系统的无模型预测
The Devil is in the Conflict: Disentangled Information Graph Neural Networks for Fraud Detection
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Graph-based fraud detection has heretofore received considerable attention. Owning to the great success of Graph Neural Networks (GNNs), many approaches adopting GNNs for fraud detection has been gaining momentum. However, most existing methods are based on the strong inductive bias of homophily, which indicates that the context neighbors tend to have same labels or similar features. In real scenarios, fraudsters often engage in camouflage behaviors in order to avoid detection system. Therefore, the homophilic assumption no longer holds, which is known as the inconsistency problem. In this paper, we argue that the performance degradation is mainly attributed to the inconsistency between topology and attribute. To address this problem, we propose to disentangle the fraud network into two views, each corresponding to topology and attribute respectively. Then we propose a simple and effective method that uses the attention mechanism to adaptively fuse two views which captures data-specific preference. In addition, we further improve it by introducing mutual information constraints for topology and attribute. To this end, we propose a Disentangled Information Graph Neural Network (DIGNN) model, which utilizes variational bounds to find an approximate solution to our proposed optimization objective function. Extensive experiments demonstrate that our model can significantly outperform stateof-the-art baselines on real-world fraud detection datasets.