论文标题

部分可观测时空混沌系统的无模型预测

AI-based Arabic Language and Speech Tutor

论文作者

Shao, Sicong, Alharir, Saleem, Hariri, Salim, Satam, Pratik, Shiri, Sonia, Mbarki, Abdessamad

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the past decade, we have observed a growing interest in using technologies such as artificial intelligence (AI), machine learning, and chatbots to provide assistance to language learners, especially in second language learning. By using AI and natural language processing (NLP) and chatbots, we can create an intelligent self-learning environment that goes beyond multiple-choice questions and/or fill in the blank exercises. In addition, NLP allows for learning to be adaptive in that it offers more than an indication that an error has occurred. It also provides a description of the error, uses linguistic analysis to isolate the source of the error, and then suggests additional drills to achieve optimal individualized learning outcomes. In this paper, we present our approach for developing an Artificial Intelligence-based Arabic Language and Speech Tutor (AI-ALST) for teaching the Moroccan Arabic dialect. The AI-ALST system is an intelligent tutor that provides analysis and assessment of students learning the Moroccan dialect at University of Arizona (UA). The AI-ALST provides a self-learned environment to practice each lesson for pronunciation training. In this paper, we present our initial experimental evaluation of the AI-ALST that is based on MFCC (Mel frequency cepstrum coefficient) feature extraction, bidirectional LSTM (Long Short-Term Memory), attention mechanism, and a cost-based strategy for dealing with class-imbalance learning. We evaluated our tutor on the word pronunciation of lesson 1 of the Moroccan Arabic dialect class. The experimental results show that the AI-ALST can effectively and successfully detect pronunciation errors and evaluate its performance by using F_1-score, accuracy, precision, and recall.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源