论文标题

部分可观测时空混沌系统的无模型预测

Detection of Risk Predictors of COVID-19 Mortality with Classifier Machine Learning Models Operated with Routine Laboratory Biomarkers

论文作者

Huyut, Mehmet Tahir, Velichko, Andrei, Belyaev, Maksim

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Early evaluation of patients who require special care and who have high death-expectancy in COVID-19, and the effective determination of relevant biomarkers on large sample-groups are important to reduce mortality. This study aimed to reveal the routine blood-value predictors of COVID-19 mortality and to determine the lethal-risk levels of these predictors during the disease process. The dataset of the study consists of 38 routine blood-values of 2597 patients who died (n = 233) and those who recovered (n = 2364) from COVID-19 in August-December, 2021. In this study, the histogram-based gradient-boosting (HGB) model was the most successful machine-learning classifier in detecting living and deceased COVID-19 patients (with squared F1 metrics F1^2 = 1). The most efficient binary combinations with procalcitonin were obtained with D-dimer, ESR, D-Bil and ferritin. The HGB model operated with these feature pairs correctly detected almost all of the patients who survived and those who died (precision > 0.98, recall > 0.98, F1^2 > 0.98). Furthermore, in the HGB model operated with a single feature, the most efficient features were procalcitonin (F1^2 = 0.96) and ferritin (F1^2 = 0.91). In addition, according to the two-threshold approach, ferritin values between 376.2 mkg/L and 396.0 mkg/L (F1^2 = 0.91) and pro-calcitonin values between 0.2 mkg/L and 5.2 mkg/L (F1^2 = 0.95) were found to be fatal risk levels for COVID-19. Considering all the results, we suggest that many features combined with these features, especially procalcitonin and ferritin, operated with the HGB model, can be used to achieve very successful results in the classification of those who live, and those who die from COVID-19. Moreover, we strongly recommend that clinicians consider the critical levels we have found for procalcitonin and ferritin properties, to reduce the lethality of the COVID-19 disease.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源