论文标题
部分可观测时空混沌系统的无模型预测
Investigating Input Modality and Task Geometry on Precision-first 3D Drawing in Virtual Reality
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Accurately drawing non-planar 3D curves in immersive Virtual Reality (VR) is indispensable for many precise 3D tasks. However, due to lack of physical support, limited depth perception, and the non-planar nature of 3D curves, it is challenging to adjust mid-air strokes to achieve high precision. Instead of creating new interaction techniques, we investigated how task geometric shapes and input modalities affect precision-first drawing performance in a within-subject study (n = 12) focusing on 3D target tracing in commercially available VR headsets. We found that compared to using bare hands, VR controllers and pens yield nearly 30% of precision gain, and that the tasks with large curvature, forward-backward or left-right orientations perform best. We finally discuss opportunities for designing novel interaction techniques for precise 3D drawing. We believe that our work will benefit future research aiming to create usable toolboxes for precise 3D drawing.