论文标题

组成者:用忠实而真实的推理链回答问题

Entailer: Answering Questions with Faithful and Truthful Chains of Reasoning

论文作者

Tafjord, Oyvind, Mishra, Bhavana Dalvi, Clark, Peter

论文摘要

我们的目标是一个提问(QA)系统,它可以通过系统的推理链来表明其自身的内部信念暗示其答案。这样的能力将可以更好地理解模型为什么产生答案的原因。我们的方法是递归地结合一个训练有素的向后链接模型,能够产生一个需要答案假设的前提,并通过一个验证者来检查模型本身通过自我汇报相信这些前提(以及综合本身)。据我们所知,这是第一个生成既忠实的多步链的系统(答案是从推理中得出的)和真实的(链条反映了系统自身的内部信念)。在使用两个不同数据集进行评估时,用户判断,生成的链的大多数(70%+)清楚地表明了一个答案是如何从一组事实中遵循的 - 比高性能基线要好得多 - 同时保留答案的准确性。通过实现系统地支持答案的模型信念,出现了新的机会,以理解模型的信念体系,并在答案错误时诊断和纠正其误解。

Our goal is a question-answering (QA) system that can show how its answers are implied by its own internal beliefs via a systematic chain of reasoning. Such a capability would allow better understanding of why a model produced the answer it did. Our approach is to recursively combine a trained backward-chaining model, capable of generating a set of premises entailing an answer hypothesis, with a verifier that checks that the model itself believes those premises (and the entailment itself) through self-querying. To our knowledge, this is the first system to generate multistep chains that are both faithful (the answer follows from the reasoning) and truthful (the chain reflects the system's own internal beliefs). In evaluation using two different datasets, users judge that a majority (70%+) of generated chains clearly show how an answer follows from a set of facts - substantially better than a high-performance baseline - while preserving answer accuracy. By materializing model beliefs that systematically support an answer, new opportunities arise for understanding the model's system of belief, and diagnosing and correcting its misunderstandings when an answer is wrong.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源