论文标题

恒定标态曲率和极端Sasaki指标的存在和不存在

Existence and Non-Existence of Constant Scalar Curvature and Extremal Sasaki Metrics

论文作者

Boyer, Charles P., Huang, Hongnian, Legendre, Eveline, Tønnesen-Friedman, Christina W.

论文摘要

我们讨论恒定标态曲率以及极端的Sasaki指标的存在和不存在。 We prove that the natural Sasaki-Boothby-Wang manifold over the admissible projective bundles over local products of non-negative CSC Kähler metrics, as described in https://link-springer-com.libproxy.unm.edu/article/10.1007/s00222-008-0126-x, always has a constant scalar curvature (CSC) Sasaki标准在其sasaki-reeb锥中。此外,我们举例说明表明,定义为Sasaki的极端Sasaki-Reeb锥-Reeb矢量领域,承认兼容的极值Sasaki公制,在Sasaki-reeb-reeb锥中不一定连接,即使在非Gorenstein案例中,也可以空无一人。我们还以示例表明,非空的极值Sasaki-reeb锥不需要包含(CSC)Sasaki指标,该公制回答了在https://mathscinet-ams-org.libproxy.unm.edu/mathscinet-getitem?mr=44420789中提出的问题。 The paper also contains an appendix where we explore the existence of Kähler metrics of constant weighted scalar curvature, as defined in https://londmathsoc-onlinelibrary-wiley-com.libproxy.unm.edu/doi/full/10.1112/plms.12255, on admissible manifolds over local products of non-negative CSC Kähler指标。

We discuss the existence and non-existence of constant scalar curvature, as well as extremal, Sasaki metrics. We prove that the natural Sasaki-Boothby-Wang manifold over the admissible projective bundles over local products of non-negative CSC Kähler metrics, as described in https://link-springer-com.libproxy.unm.edu/article/10.1007/s00222-008-0126-x, always has a constant scalar curvature (CSC) Sasaki metric in its Sasaki-Reeb cone. Moreover, we give examples that show that the extremal Sasaki--Reeb cone, defined as the set of Sasaki--Reeb vector fields admitting a compatible extremal Sasaki metric, is not necessarily connected in the Sasaki--Reeb cone, and it can be empty even in the non-Gorenstein case. We also show by example that a non-empty extremal Sasaki--Reeb cone need not contain a (CSC) Sasaki metric which answers a question posed in https://mathscinet-ams-org.libproxy.unm.edu/mathscinet-getitem?mr=4420789. The paper also contains an appendix where we explore the existence of Kähler metrics of constant weighted scalar curvature, as defined in https://londmathsoc-onlinelibrary-wiley-com.libproxy.unm.edu/doi/full/10.1112/plms.12255, on admissible manifolds over local products of non-negative CSC Kähler metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源