论文标题
通过多观看未校准的光度立体声和梯度-SDF的高质量RGB-D重建
High-Quality RGB-D Reconstruction via Multi-View Uncalibrated Photometric Stereo and Gradient-SDF
论文作者
论文摘要
在许多应用中,精细详细的重建需求量很高。但是,大多数现有的RGB-D重建方法都依赖于预先计算的准确摄像头来恢复详细的表面几何形状,在优化不同数量时,需要对表面的表示需要进行调整。在本文中,我们提出了一种新型的基于RGB-D的重建方法,该方法通过利用梯度签名的距离场(梯度-SDF)来应对相机姿势,照明,反照率和表面正常估计。提出的方法使用基于物理的模型来制定图像渲染过程,并使用其体积表示在实际表面上优化了表面的数量,而不是其他作品,这些作品仅在实际表面附近估算表面数量。为了验证我们的方法,我们研究了两个基于物理的图像形成模型,用于自然光和点光源应用。关于合成和现实世界数据集的实验结果表明,所提出的方法比最先进的方法更忠实地恢复表面的高质量几何形状,并进一步提高了估计的相机姿势的准确性。
Fine-detailed reconstructions are in high demand in many applications. However, most of the existing RGB-D reconstruction methods rely on pre-calculated accurate camera poses to recover the detailed surface geometry, where the representation of a surface needs to be adapted when optimizing different quantities. In this paper, we present a novel multi-view RGB-D based reconstruction method that tackles camera pose, lighting, albedo, and surface normal estimation via the utilization of a gradient signed distance field (gradient-SDF). The proposed method formulates the image rendering process using specific physically-based model(s) and optimizes the surface's quantities on the actual surface using its volumetric representation, as opposed to other works which estimate surface quantities only near the actual surface. To validate our method, we investigate two physically-based image formation models for natural light and point light source applications. The experimental results on synthetic and real-world datasets demonstrate that the proposed method can recover high-quality geometry of the surface more faithfully than the state-of-the-art and further improves the accuracy of estimated camera poses.