论文标题

加权坐标Poset块代码

Weighted Coordinates Poset Block Codes

论文作者

Shriwastva, Atul Kumar, Selvaraj, R. S.

论文摘要

给定$ [n] = \ {1,2,\ ldots,n \} $,$ [n] $上的部分顺序$ \ preceq $,标签映射$π:[n] \ rightarrow \ rightarrow \ mathbb {n} $ with $π(i)= k_i $ with $ \ sum sum um y sum unliend \ Mathbb {f} _ {q}^{k_1} \ oplus \ mathbb {f} _ {q}^{k_2} \ oplus \ ldots \ ldots \ ldots \ ldots \ oplus \ oplus \ oplus \ mathbb {f}函数$ w $ on $ \ mathbb {f} _q $,我们定义了poset块公制$ d _ {(p,p,w,w,π)} $上的$ \ m \ m \ mathbb {f} _ {q}^{q}^{n} $基于poset poset $ p =(n],\ preceq)$。度量$ d _ {(p,w,π)} $被称为加权坐标poset块公制($(p,w,π)$ - 公制)。它扩展了由L. Panek和J. A. Pinheiro引入的加权坐标POSET度量标准($(p,w)$ - 公制),并概括了由M. M. M. M. S. Alves等人介绍的Poset Block Metric($(P,π)$ - 公制)。我们确定$(p,w,π)$ - 空间的完整重量分布,从而以$(p,w)$ - space,$(p,π)$ - 空间,$π$ -space和$ p $ -p $ -space作为特殊情况。我们以$(p,w,π)$ - 代码和$(p,w)$ - 代码获得单例。特别是,我们重新攻击了有关$(p,π)$ - 公制和$ p $ - metric的任何代码的单身人士的限制。此外,找到了针对NRT块代码的填充半径和单胎。

Given $[n]=\{1,2,\ldots,n\}$, a partial order $\preceq$ on $[n]$, a label map $π: [n] \rightarrow \mathbb{N}$ defined by $π(i) = k_i$ with $\sum_{i=1}^{n}π(i) = N$, the direct sum $ \mathbb{F}_{q}^{k_1} \oplus \mathbb{F}_{q}^{k_2}\oplus \ldots \oplus \mathbb{F}_{q}^{k_n} $ of $ \mathbb{F}_q^N $, and a weight function $w$ on $ \mathbb{F}_q $, we define a poset block metric $d_{(P,w,π)}$ on $\mathbb{F}_{q}^{N}$ based on the poset $P=([n],\preceq)$. The metric $d_{(P,w,π)}$ is said to be weighted coordinates poset block metric ($(P,w,π)$-metric). It extends the weighted coordinates poset metric ($(P,w)$-metric) introduced by L. Panek and J. A. Pinheiro and generalizes the poset block metric ($(P,π)$-metric) introduced by M. M. S. Alves et al. We determine the complete weight distribution of a $(P,w,π)$-space, thereby obtaining it for $(P,w)$-space, $(P,π)$-space, $π$-space, and $P$-space as special cases. We obtain the Singleton bound for $(P,w,π)$-codes and for $(P,w)$-codes as well. In particular, we re-obtain the Singleton bound for any code with respect to $(P,π)$-metric and $P$-metric. Moreover, packing radius and Singleton bound for NRT block codes are found.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源