论文标题
超越透射状态:实现单个或多个量子位最佳相干旋转的现场状态
Beyond transcoherent states: Field states for effecting optimal coherent rotations on single or multiple qubits
论文作者
论文摘要
从半经典的角度来看,激光脉冲可用于在原子系统上实施任意转换。量子在机械上,残留的原子场纠缠破坏了这一诺言。透视态是野外状态,可以通过在原子或激发状态中产生完美的原子中的完美连贯性来解决该问题。我们将此充分量化的范式扩展到四个方向:首先,我们将原子从其地面或激发状态转化为Bloch球上的任何点,而没有残留原子域纠缠。按角度$θ$进行旋转的最佳强脉冲是在光子数差异中挤压的$ \ rm {sinc}θ$。接下来,我们调查实施旋转门,表明在任意,未知初始状态在原子上制定$θ$ pulse的最佳高斯野外状态少了:$ \ rm {sinc} \tfracθ{2} $。第三,我们将这些调查扩展到同时与多个原子相互作用的田地,再次发现该数字被$ \ \tfracπ{2} $挤压对于制定$ \tfracπ{2} $脉冲在所有原子上的所有原子的同时均同时纠正了平均数量数量的原子的顺序,这是最佳的。最后,我们发现通过涉及$ M $ -PHOTON吸收的非线性交互作用,最能执行$θ$的任意旋转状态,其中发现相同的最佳压缩因子为$ \ rm \ rm {sinc}θ$。因此,可以通过最佳量挤压控制场来减轻多种原子场相互作用的反向。
Semiclassically, laser pulses can be used to implement arbitrary transformations on atomic systems; quantum mechanically, residual atom-field entanglement spoils this promise. Transcoherent states are field states that fix this problem in the fully quantized regime by generating perfect coherence in an atom initially in its ground or excited state. We extend this fully quantized paradigm in four directions: First, we introduce field states that transform an atom from its ground or excited state to any point on the Bloch sphere without residual atom-field entanglement. The best strong pulses for carrying out rotations by angle $θ$ are are squeezed in photon-number variance by a factor of $\rm{sinc}θ$. Next, we investigate implementing rotation gates, showing that the optimal Gaussian field state for enacting a $θ$ pulse on an atom in an arbitrary, unknown initial state is number squeezed by less: $\rm{sinc}\tfracθ{2}$. Third, we extend these investigations to fields interacting with multiple atoms simultaneously, discovering once again that number squeezing by $\tfracπ{2}$ is optimal for enacting $\tfracπ{2}$ pulses on all of the atoms simultaneously, with small corrections on the order of the ratio of the number of atoms to the average number of photons. Finally, we find field states that best perform arbitrary rotations by $θ$ through nonlinear interactions involving $m$-photon absorption, where the same optimal squeezing factor is found to be $\rm{sinc}θ$. Backaction in a wide variety of atom-field interactions can thus be mitigated by squeezing the control fields by optimal amounts.