论文标题
了解Al在低成本室温熔融盐中的可逆电沉积
Understanding The Reversible Electrodeposition of Al in Low-Cost Room Temperature Molten Salts
论文作者
论文摘要
铝是最丰富的金属,是三价,在环境潮湿的空气中惰性,密度约为锂在室温下的密度约四倍。这些属性使其成为电池中电能的经济高效,长时间存储的有吸引力的材料。在过去的十年中,科学发现确定,可以通过在基于咪唑烷基的,室温的离子 - 液体氧化铝氯化物电解质中与石墨或过渡金属氧化物阴极的Al阳极来创建二次AL电池。在这里,我们报告了一项系统研究的发现,该发现阐明了负责Al电池阳极高可逆性的离子液体电解质的结构要求,物理化学和运输特性。我们发现,这些电解质的最重要的界面和运输特性可以在其他电解质中实现,包括基于铵的熔融盐,其成本比离子液态铝氯化物熔体低21倍。特异性证明了基于铵和咪唑烷基的电解质的高Al可逆性需要溶剂化物质的临界比,其中刘易斯酸度和有益的界面反应不断地蚀刻氧化铝抵抗性界面层,并形成有益的固体电解质固相。我们进一步报告说,支持高阳极可逆性的新电解质家族的成功开发也为使用X射线吸收光谱法详细研究详细研究了互化石墨阴极的工作机理的良好平台。因此,我们的发现为开发简单,成本效益,室温的AL电池开辟了新的机会,以实现长期电气存储。
Aluminum is the most earth-abundant metal, is trivalent, is inert in ambient humid air, and has a density approximately four-times that of lithium at room temperature. These attributes make it an attractive material for cost-effective, long-duration storage of electrical energy in batteries. Scientific discoveries in the past decade have established that secondary Al batteries can be created by paring an Al anode with a graphite or transition metal oxide cathode, in imidazolium-based, room-temperature ionic-liquid-Aluminum chloride electrolytes. Here we report findings from a systematic study that sheds light on the structural requirements, physicochemical, and transport properties of the ionic liquid electrolytes responsible for the high reversibility of Al battery anodes. We find that the most important interfacial and transport properties of these electrolytes can be achieved in other electrolytes, including ammonium-based molten salts that are available at costs as much as twenty-times lower than the ionic liquid-Aluminum chloride melt. High Al reversibility in ammonium- and imidazolium-based electrolytes is specifically shown to require a critical ratio of the solvation species, where Lewis acidity and beneficial interfacial reactions continuously etch the alumina resistive interfacial layer and form beneficial solid electrolyte interphase at the anode. We report further that successful development of new electrolyte families that support high Al anode reversibility also provides a good platform for detailed studies of the working mechanisms of an intercalation graphite cathode using X-ray absorption spectroscopy. Our findings therefore open new opportunities for developing simple, cost-effective, room-temperature Al batteries that enable long-duration electrical energy storage.