论文标题

多任务脑肿瘤与扩散模型介绍:一项方法论报告

Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological Report

论文作者

Rouzrokh, Pouria, Khosravi, Bardia, Faghani, Shahriar, Moassefi, Mana, Vahdati, Sanaz, Erickson, Bradley J.

论文摘要

尽管对将深度学习(DL)模型应用于医学成像的兴趣不断增加,但医疗数据集的典型稀缺性和失衡会严重影响DL模型的性能。可以自由共享的合成数据的产生而不损害患者隐私是解决这些困难的众所周知的技术。介入算法是DL生成模型的子集,它们可以在匹配其周围环境的同时改变输入图像的一个或多个区域,并且在某些情况下是不形象的输入条件。尽管大多数用于医学成像数据使用生成对抗网络(GAN)的介绍技术,但由于其输出量有限,这些算法的性能通常是次优的,这是GAN已知的问题。 denoising扩散概率模型(DDPM)是最近引入的生成网络系列,可以产生与gan相当的结果,但具有多种输出的结果。在本文中,我们描述了一个DDPM,以使用各种序列执行大脑MRI的2D轴向切片,并在各种评估场景中呈现其性能的示例示例。我们的模型和用于尝试我们工具的公共在线界面可在以下网址提供:https://github.com/mayo-radiology-informatics-lab/mbti

Despite the ever-increasing interest in applying deep learning (DL) models to medical imaging, the typical scarcity and imbalance of medical datasets can severely impact the performance of DL models. The generation of synthetic data that might be freely shared without compromising patient privacy is a well-known technique for addressing these difficulties. Inpainting algorithms are a subset of DL generative models that can alter one or more regions of an input image while matching its surrounding context and, in certain cases, non-imaging input conditions. Although the majority of inpainting techniques for medical imaging data use generative adversarial networks (GANs), the performance of these algorithms is frequently suboptimal due to their limited output variety, a problem that is already well-known for GANs. Denoising diffusion probabilistic models (DDPMs) are a recently introduced family of generative networks that can generate results of comparable quality to GANs, but with diverse outputs. In this paper, we describe a DDPM to execute multiple inpainting tasks on 2D axial slices of brain MRI with various sequences, and present proof-of-concept examples of its performance in a variety of evaluation scenarios. Our model and a public online interface to try our tool are available at: https://github.com/Mayo-Radiology-Informatics-Lab/MBTI

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源