论文标题
来自Gutzwiller共轭梯度最小化理论的两波段哈驼模型的基准和结果
Benchmarks and results of the two-band Hubbard model from the Gutzwiller conjugate gradient minimization theory
论文作者
论文摘要
使用第一原理Gutzwiller共轭梯度最小化理论来计算一维双波体哈伯德模型的地面特性,例如能量和双重占用。与密度矩阵重新归一化组理论的结果的有利一致性证明了我们方法的准确性。将旋转不变的方法进一步纳入方法,以大大降低300次的计算复杂性。此外,我们通过评估电荷间隙来研究金属和莫特绝缘子之间的Mott Mott过渡。通过大大减少计算工作,我们的方法在与密度矩阵重新归一化组理论的合理一致时重现了相图。
Ground-state properties, such as energies and double occupancies, of a one-dimensional two-band Hubbard model are calculated using a first principles Gutzwiller conjugate gradient minimization theory. The favorable agreement with the results from the density matrix renormalization group theory demonstrates the accuracy of our method. A rotationally invariant approach is further incorporated into the method to greatly reduce the computational complexity with a speedup of 300 times. Moreover, we investigate the Mott transition between a metal and a Mott insulator by evaluating the charge gap. With greatly reduced computational effort, our method reproduces the phase diagram in reasonable agreement with the density matrix renormalization group theory.