论文标题
渐近衰变朝向溶液的稳态衰减,以实现非常快速和奇异的扩散方程
Asymptotic decay towards steady states of solutions to very fast and singular diffusion equations
论文作者
论文摘要
我们分析了解决方案的长期行为对一类与非常快速和奇异扩散的多孔介质方程相关的问题,其在空间和时间源术语中的均值均值为零。在第二和第三维中,我们确定了渐近$ H^1 $ - 固定方案的多孔培养基指数的临界值,通常可以保持独特的非均匀阳性稳态。
We analyze long-time behavior of solutions to a class of problems related to very fast and singular diffusion porous medium equations having nonhomogeneous in space and time source terms with zero mean. In dimensions two and three, we determine critical values of porous medium exponent for the asymptotic $H^1$-convergence of the solutions to a unique nonhomogeneous positive steady state generally to hold.