论文标题
Soux AGN样品:光学/UV/X射线SED和盘的性质
The SOUX AGN sample: Optical/UV/X-ray SEDs and the nature of the disc
论文作者
论文摘要
我们使用$ \ sim $ 700 AGN的Soux样品在$ M _ {\ Mathrm {BH}} $的2D网格上形成平均光学-UV-X射线SEDS和$ L_ {2500} $。我们将它们与新的AGN SED模型的预测进行了比较,该模型包括用于热和温暖组合区域以及外部标准盘的处方。这可以很好地预测7.5 <log($ m _ {\ mathrm {bh}}/m _ {\ mathrm {\ odot}} $)<9.0 <9.0 <9.0,$ l/l _ {\ mathrm {eddd}} $在较高的群体中,但在较高的范围内,该模型是在较高的范围内,在$ l/l _ {\ mathrm {edd}}} $中,在$ l/l _ {\ mathrm {我们从整个SDSS样本中创建光学-UV复合材料,并使用它们来表明,在恒定亮度下,在数十年的$ M _ {\ Mathrm {Bh}} $中,光学 - UV连续体的光谱形状没有显着变化。我们首次表明,具有高黑孔旋转的标准光盘模型无法匹配。这些显然是合适的,但并不是自一致的,因为它们不包含进入观察者的发射的一般相对论效应。在高自旋时,增加的重力红移可以补偿较小的内盘半径几乎所有较高的温度发射。数据不匹配任何当前积分流模型的预测。光盘完全被温暖的组合层覆盖,其属性用$ l/l _ {\ mathrm {edd}} $系统地变化,或者积聚流结构与标准盘模型的根本不同。
We use the SOUX sample of $\sim$700 AGN to form average optical-UV-X-rays SEDs on a 2D grid of $M_{\mathrm{BH}}$ and $L_{2500}$. We compare these with the predictions of a new AGN SED model, QSOSED, which includes prescriptions for both hot and warm Comptonisation regions as well as an outer standard disc. This predicts the overall SED fairly well for 7.5<log($M_{\mathrm{BH}}/M_{\mathrm{\odot}}$)<9.0 over a wide range in $L/L_{\mathrm{Edd}}$, but at higher masses the outer disc spectra in the model are far too cool to match the data. We create optical-UV composites from the entire SDSS sample and use these to show that the mismatch is due to there being no significant change in spectral shape of the optical-UV continuum across several decades of $M_{\mathrm{BH}}$ at constant luminosity. We show for the first time that this cannot be matched by standard disc models with high black hole spin. These apparently fit, but are not self-consistent as they do not include the General Relativistic effects for the emission to reach the observer. At high spin, increased gravitational redshift compensates for almost all of the higher temperature emission from the smaller inner disc radii. The data do not match the predictions made by any current accretion flow model. Either the disc is completely covered by a warm Comptonisation layer whose properties change systematically with $L/L_{\mathrm{Edd}}$, or the accretion flow structure is fundamentally different to that of the standard disc models.