论文标题

庞加尔类型的恒定标态曲率kähler指标的锥形近似

A conical approximation of constant scalar curvature Kähler metrics of Poincaré type

论文作者

Aoi, Takahiro

论文摘要

令$(x,l_x)$为两极分化,而$ d $为平滑的超曲面,以至于$ d \ in | l_x | $。 In this paper, we show that if there is no nontrivial holomorphic vector field on $D$ and ${\rm Aut}_0 ((X,L_X); D)$ is trivial, then constant scalar curvature Kähler metrics of Poincaré type on $X \setminus D$ can be approximated by constant scalar curvature Kähler metrics with cone singularities of sufficiently沿$ d $的小角度。该结果意味着$((x,l_x); d)$ a Gult 0的log k-semistability。

Let $(X,L_X)$ be a polarized manifold and $D$ be a smooth hypersurface such that $D \in | L_X |$. In this paper, we show that if there is no nontrivial holomorphic vector field on $D$ and ${\rm Aut}_0 ((X,L_X); D)$ is trivial, then constant scalar curvature Kähler metrics of Poincaré type on $X \setminus D$ can be approximated by constant scalar curvature Kähler metrics with cone singularities of sufficiently small angle along $D$. This result implies log K-semistability of $((X,L_X);D)$ with angle 0.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源