论文标题

能量稳定的平滑粒子流体动力学离散化的Navier-Stokes-Cahn-Hilliard模型,用于不可压缩的两相流

An energy-stable Smoothed Particle Hydrodynamics discretization of the Navier-Stokes-Cahn-Hilliard model for incompressible two-phase flows

论文作者

Feng, Xiaoyu, Qiao, Zhonghua, Sun, Shuyu, Wang, Xiuping

论文摘要

已经开发了基于Eulerian框架中Navier-Stokes-Cahn-Hilliard(NSCH)模型的不可压缩的两相流量的能量稳定的数值方法,而Lagrangian框架中很少进行研究。平滑的颗粒流体动力学(SPH)是一种流行的无网状拉格朗日方法,用于求解复杂的流体流。在本文中,我们介绍了一项关于不可压缩的两相流的NSCH模型能源稳定的SPH离散化的开创性研究。我们证明,这种SPH方法在完全离散的水平上继承了质量和动量保护和能量耗散特性。通过将动量和连续性方程解次的投影过程,数值方案符合无差异条件。进行了一些数值实验,以显示提出的能量稳定的SPH方法的性能,以求解两相NSCH模型。质量和动量保守和能量耗散特性的遗传得到数值验证。

Varieties of energy-stable numerical methods have been developed for incompressible two-phase flows based on the Navier-Stokes-Cahn-Hilliard (NSCH) model in the Eulerian framework, while few investigations have been made in the Lagrangian framework. Smoothed particle hydrodynamics (SPH) is a popular mesh-free Lagrangian method for solving complex fluid flows. In this paper, we present a pioneering study on the energy-stable SPH discretization of the NSCH model for incompressible two-phase flows. We prove that this SPH method inherits mass and momentum conservation and energy dissipation properties at the fully discrete level. With the projection procedure to decouple the momentum and continuity equations, the numerical scheme meets the divergence-free condition. Some numerical experiments are carried out to show the performance of the proposed energy-stable SPH method for solving the two-phase NSCH model. The inheritance of mass and momentum conservation and the energy dissipation properties are verified numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源