论文标题
平衡处稀释气的动力学:从原子描述到波动流体动力学
Dynamics of dilute gases at equilibrium: from the atomistic description to fluctuating hydrodynamics
论文作者
论文摘要
我们得出线性波动的流体动力学作为平衡处颗粒确定性系统的低密度极限。证明是基于作者先前的结果,在该结果中,获得了波动场协方差的渐近学以及波动领域的WICK规则的证明。
We derive linear fluctuating hydrodynamics as the low density limit of a deterministic system of particles at equilibrium. The proof builds upon previous results of the authors where the asymptotics of the covariance of the fluctuation field is obtained, and on the proof of the Wick rule for the fluctuation field.