论文标题

$ 1/f $噪声从非重叠矩形脉冲的顺序中

$1/f$ noise from the sequence of nonoverlapping rectangular pulses

论文作者

Kononovicius, Aleksejus, Kaulakys, Bronislovas

论文摘要

我们分析了由非重叠矩形脉冲组成的信号的功率谱密度。首先,我们得出了一个由非重叠脉冲序列构成的信号的功率光谱密度的通用公式。然后,我们对矩形脉冲情况进行详细分析。我们表明,与特征性差距(或脉冲)持续时间相比,当特征性脉冲(或间隙)持续时间长时间时,纯净的$ 1/f $噪声可以观察到极低的频率,而间隙(或脉冲)持续时间是幂律分布。获得的结果和弱非连效过程所获得的结果。

We analyze the power spectral density of a signal composed of nonoverlapping rectangular pulses. First, we derive a general formula for the power spectral density of a signal constructed from the sequence of nonoverlapping pulses. Then we perform a detailed analysis of the rectangular pulse case. We show that pure $1/f$ noise can be observed until extremely low frequencies when the characteristic pulse (or gap) duration is long in comparison to the characteristic gap (or pulse) duration, and gap (or pulse) durations are power-law distributed. The obtained results hold for the ergodic and weakly nonergodic processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源