论文标题
点击:透明和保护隐私的数据服务
TAP: Transparent and Privacy-Preserving Data Services
论文作者
论文摘要
今天,用户期望可以从处理其数据的服务中获得更多的安全性。除了传统的数据隐私和完整性要求外,他们还期望透明度,即服务对数据的处理可由用户和受信任的审计师进行证实。我们的目标是构建一个多用户系统,该系统为大量操作提供数据隐私,完整性和透明度,同时实现实际绩效。 为此,我们首先确定使用已认证数据结构的现有方法的局限性。我们发现它们分为两类:1)那些从其他用户中隐藏每个用户数据的人,但是可验证的操作范围有限(例如,Coniks,Merkle2和责任证明),以及2)支持广泛可验证的操作的操作,但使所有数据可公开可见(例如,综合B和Falcondb)。然后,我们提出点击以解决上述限制。 TAP的关键组成部分是一种新型的树数据结构,该结构支持有效的结果验证,并依靠使用零知识范围证明的独立审核来证明在不透露用户数据的情况下正确构造了树。 TAP支持广泛的可验证操作,包括分位数和样品标准偏差。我们对TAP进行了全面的评估,并将其与两个最先进的基线(即IntegidB和Merkle2)进行了比较,表明该系统在大规模上是实际的。
Users today expect more security from services that handle their data. In addition to traditional data privacy and integrity requirements, they expect transparency, i.e., that the service's processing of the data is verifiable by users and trusted auditors. Our goal is to build a multi-user system that provides data privacy, integrity, and transparency for a large number of operations, while achieving practical performance. To this end, we first identify the limitations of existing approaches that use authenticated data structures. We find that they fall into two categories: 1) those that hide each user's data from other users, but have a limited range of verifiable operations (e.g., CONIKS, Merkle2, and Proofs of Liabilities), and 2) those that support a wide range of verifiable operations, but make all data publicly visible (e.g., IntegriDB and FalconDB). We then present TAP to address the above limitations. The key component of TAP is a novel tree data structure that supports efficient result verification, and relies on independent audits that use zero-knowledge range proofs to show that the tree is constructed correctly without revealing user data. TAP supports a broad range of verifiable operations, including quantiles and sample standard deviations. We conduct a comprehensive evaluation of TAP, and compare it against two state-of-the-art baselines, namely IntegriDB and Merkle2, showing that the system is practical at scale.