论文标题
从元学习的指示中增强自然语言
Boosting Natural Language Generation from Instructions with Meta-Learning
论文作者
论文摘要
最近的工作表明,接受多任务\ textit {教学学习}(MTIL)培训的语言模型(LMS)可以在零和少数弹射设置中解决不同的NLP任务,并且与迅速调整相比,性能提高了。 MTIL说明LMS可以从输入和输出的表面模式以外的指令中提取和使用有关任务的信息。这表明元学习可能会进一步增强指令的有效任务转移的利用。在本文中,我们研究了将元学习应用于MTIT是否可以进一步改善归档设置中未见任务的概括。具体而言,我们建议在三个方向上适应MTIL:1)模型不可知的元学习(MAML),2)基于HNET和MAML的方法,基于指令,以及3)基于指令的任务参数,以及3)方法。通过大规模自然指令V2数据集的大量实验,我们表明我们所提出的方法在零弹性设置中对强基础的强大改善。特别是,元学习提高了指令的有效性,当测试任务严格零射(即培训集中没有类似的任务)时,对LMS的影响最大,这对LMS来说是“难”的,这说明了MTIL对于分发任务的MTIL的潜力。
Recent work has shown that language models (LMs) trained with multi-task \textit{instructional learning} (MTIL) can solve diverse NLP tasks in zero- and few-shot settings with improved performance compared to prompt tuning. MTIL illustrates that LMs can extract and use information about the task from instructions beyond the surface patterns of the inputs and outputs. This suggests that meta-learning may further enhance the utilization of instructions for effective task transfer. In this paper we investigate whether meta-learning applied to MTIL can further improve generalization to unseen tasks in a zero-shot setting. Specifically, we propose to adapt meta-learning to MTIL in three directions: 1) Model Agnostic Meta Learning (MAML), 2) Hyper-Network (HNet) based adaptation to generate task specific parameters conditioned on instructions, and 3) an approach combining HNet and MAML. Through extensive experiments on the large scale Natural Instructions V2 dataset, we show that our proposed approaches significantly improve over strong baselines in zero-shot settings. In particular, meta-learning improves the effectiveness of instructions and is most impactful when the test tasks are strictly zero-shot (i.e. no similar tasks in the training set) and are "hard" for LMs, illustrating the potential of meta-learning for MTIL for out-of-distribution tasks.