论文标题

广义倒数观点

Generalized Reciprocal Perspective

论文作者

Dick, Kevin, Kyrollos, Daniel G., Green, James R.

论文摘要

在许多域中,现实世界中的问题可以表示为网络。节点代表特定域的元素,边缘捕获元素之间的关系。利用高性能计算和优化的链路预测算法,越来越有可能评估节点对的每一个可能的组合,从而可以生成全面的预测矩阵(CPM),该综合预测矩阵(CPM)将单个链接预测分数放在所有可能的链接的上下文中,该链接涉及涉及Node(提供数据驱动器上下文)。从历史上看,考虑到指数增长的问题大小导致计算棘手的性能,这种上下文信息被忽略了。但是,我们证明,鉴于预测性能的改善,花费高性能计算资源来产生CPM是一项值得投资的。在这项工作中,我们对所有新颖的半监督机器学习方法(表示相互视角(RP))的所有成对链接预测任务概括。我们证明,RP通过利用CPM中的大量信息来显着提高链接预测准确性。从CPM中提取基于上下文的特征,以用于堆叠的分类器中,我们证明RP在级联反应中的应用几乎总是显着导致(P <0.05)改进了预测。这些关于RS型问题的结果表明,RP适用于广泛的链接预测问题。

Across many domains, real-world problems can be represented as a network. Nodes represent domain-specific elements and edges capture the relationship between elements. Leveraging high-performance computing and optimized link prediction algorithms, it is increasingly possible to evaluate every possible combination of nodal pairs enabling the generation of a comprehensive prediction matrix (CPM) that places an individual link prediction score in the context of all possible links involving either node (providing data-driven context). Historically, this contextual information has been ignored given exponentially growing problem sizes resulting in computational intractability; however, we demonstrate that expending high-performance compute resources to generate CPMs is a worthwhile investment given the improvement in predictive performance. In this work, we generalize for all pairwise link-prediction tasks our novel semi-supervised machine learning method, denoted Reciprocal Perspective (RP). We demonstrate that RP significantly improves link prediction accuracy by leveraging the wealth of information in a CPM. Context-based features are extracted from the CPM for use in a stacked classifier and we demonstrate that the application of RP in a cascade almost always results in significantly (p < 0.05) improved predictions. These results on RS-type problems suggest that RP is applicable to a broad range of link prediction problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源