论文标题

高原的收敛属扩张

A convergent genus expansion for the plateau

论文作者

Saad, Phil, Stanford, Douglas, Yang, Zhenbin, Yao, Shunyu

论文摘要

我们猜想了一个双尺度矩阵积分的光谱形式的公式,该矩阵积分不可或缺,状态密度较大和固定温度的限制。该公式的属扩展具有非零的收敛性。为了了解本系列的起源,我们将周期性轨道“相遇”的半经典理论进行比较。在Jackiw-teitelboim(JT)重力中,遇到的遇到对应于相互取消的模量空间的一部分(在可定向的情况下),但在低能量下单独生长。在One属中,我们展示了整个模量空间积分如何解决低能区域并给出有限的非零答案。

We conjecture a formula for the spectral form factor of a double-scaled matrix integral in the limit of large time, large density of states, and fixed temperature. The formula has a genus expansion with a nonzero radius of convergence. To understand the origin of this series, we compare to the semiclassical theory of "encounters" in periodic orbits. In Jackiw-Teitelboim (JT) gravity, encounters correspond to portions of the moduli space integral that mutually cancel (in the orientable case) but individually grow at low energies. At genus one we show how the full moduli space integral resolves the low energy region and gives a finite nonzero answer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源