论文标题

一致:新闻文章的开放式问题生成

CONSISTENT: Open-Ended Question Generation From News Articles

论文作者

Chakrabarty, Tuhin, Lewis, Justin, Muresan, Smaranda

论文摘要

关于问题的最新工作主要集中在事实问题上,例如谁,什么,何时,基本事实。生成开放式的原因,如何,如何,什么等。需要长形答案的问题被证明更加困难。为了促进开放式问题的产生,我们提出了一致的,这是一种新的端到端系统,用于产生开放式问题,这些问题可以从输入文本中回答和忠实。使用新闻文章作为实验的值得信赖的基础,我们使用自动和人类的评估证明了模型对几个基线的强度。我们为专家生成的开放式问题提供评估数据集。我们讨论新闻媒体组织的潜在下游应用程序。

Recent work on question generation has largely focused on factoid questions such as who, what, where, when about basic facts. Generating open-ended why, how, what, etc. questions that require long-form answers have proven more difficult. To facilitate the generation of open-ended questions, we propose CONSISTENT, a new end-to-end system for generating open-ended questions that are answerable from and faithful to the input text. Using news articles as a trustworthy foundation for experimentation, we demonstrate our model's strength over several baselines using both automatic and human=based evaluations. We contribute an evaluation dataset of expert-generated open-ended questions.We discuss potential downstream applications for news media organizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源