论文标题
考虑本地和全球屈曲响应的多尺度结构的拓扑优化
Topology Optimization of Multiscale Structures Considering Local and Global Buckling Response
论文作者
论文摘要
在多尺度结构的拓扑优化方面已经完成了许多工作,以实现最大的刚度或最低合规性设计。这种方法可以追溯到1988年Bendsøe和Kikuchi的原始基于均质化的工作,由于制造方法等制造方法的进步,该作品最近恢复了。在主应力方向上以局部为导向的orthropic微观结构为高效的刚度提供了最佳设计,而对于纯刚度物镜,多孔各向同性微结构是次优的,因此无用。但是,已经假定并说明了各向同性微结构(填充)可能增强结构屈曲稳定性,但这尚未直接证明和优化。在这项工作中,我们通过各向同性多孔填充物优化了多尺度结构的屈曲稳定性。为此,我们基于基于Bloch-Floquet的细胞分析的局部屈曲估计值建立局部密度依赖性Willam-Warnke屈服表面,以预测均质化材料的局部不稳定。这些基于本地屈曲的压力约束与全球屈曲标准相结合,以获得拓扑优化的设计,这些设计同时考虑了本地和全球屈曲稳定性。与标准的单尺度方法相比,具有小细胞尺寸的脱殖结构证实了该方法的有效性,并证明了巨大的结构收益以及时间节省。
Much work has been done in topology optimization of multiscale structures for maximum stiffness or minimum compliance design. Such approaches date back to the original homogenization-based work by Bendsøe and Kikuchi from 1988, which lately has been revived due to advances in manufacturing methods like additive manufacturing. Orthotropic microstructures locally oriented in principal stress directions provide for highly efficient stiffness optimal designs, whereas for the pure stiffness objective, porous isotropic microstructures are sub-optimal and hence not useful. It has, however, been postulated and exemplified that isotropic microstructures (infill) may enhance structural buckling stability but this has yet to be directly proven and optimized. In this work, we optimize buckling stability of multiscale structures with isotropic porous infill. To do this, we establish local density dependent Willam-Warnke yield surfaces based on local buckling estimates from Bloch-Floquet-based cell analysis to predict local instability of the homogenized materials. These local buckling-based stress constraints are combined with a global buckling criterion to obtain topology optimized designs that take both local and global buckling stability into account. De-homogenized structures with small and large cell sizes confirm validity of the approach and demonstrate huge structural gains as well as time savings compared to standard singlescale approaches.