论文标题
在过度参数化学习中包装:风险表征和风险单调化
Bagging in overparameterized learning: Risk characterization and risk monotonization
论文作者
论文摘要
包装是统计和机器学习中常用的合奏技术,以提高预测程序的性能。在本文中,我们研究了按比例渐近学制度下的袋式预测变量的预测风险,在这种情况下,特征数量与观测值数量的比率收敛到常数。具体而言,我们提出了一种一般策略,以使用简单随机抽样的经典结果来分析袋式预测变量误差丢失下的预测风险。专门针对该策略,我们在具有任意特征协方差矩阵和信号向量的良好的线性模型下,带有任意数量的袋子的行李脊和无骑行预测变量的确切渐近风险。此外,我们开了一个通用的交叉验证程序,以选择用于装袋的最佳子样本大小,并讨论其效用以消除样本量(即双重或多个下降)中极限风险的非单调行为。在展示袋式山脊和无骑线预测变量的提议的过程时,我们彻底研究了最佳子样品大小的甲骨文特性,并提供了不同包装变体之间的深入比较。
Bagging is a commonly used ensemble technique in statistics and machine learning to improve the performance of prediction procedures. In this paper, we study the prediction risk of variants of bagged predictors under the proportional asymptotics regime, in which the ratio of the number of features to the number of observations converges to a constant. Specifically, we propose a general strategy to analyze the prediction risk under squared error loss of bagged predictors using classical results on simple random sampling. Specializing the strategy, we derive the exact asymptotic risk of the bagged ridge and ridgeless predictors with an arbitrary number of bags under a well-specified linear model with arbitrary feature covariance matrices and signal vectors. Furthermore, we prescribe a generic cross-validation procedure to select the optimal subsample size for bagging and discuss its utility to eliminate the non-monotonic behavior of the limiting risk in the sample size (i.e., double or multiple descents). In demonstrating the proposed procedure for bagged ridge and ridgeless predictors, we thoroughly investigate the oracle properties of the optimal subsample size and provide an in-depth comparison between different bagging variants.