论文标题
与合成数据的物理信息深度扩散MRI重建:休息训练数据瓶颈在人工智能中
Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data: Break Training Data Bottleneck in Artificial Intelligence
论文作者
论文摘要
扩散磁共振成像(MRI)是具有重要的临床和研究应用的体内水分子中非侵入性运动检测的唯一成像方式。通过多弹药技术获得的扩散加权成像(DWI)MRI可以实现更高的分辨率,更好的信噪比和比单发相比更低的几何变形,但遭受相互诱发的伪影。这些文物不能前瞻性去除,导致没有无伪影培训标签。因此,多弹性DWI重建中深度学习的潜力在很大程度上仍未开发。为了打破训练数据瓶颈,我们提出了一种物理信息深的DWI重建方法(PIDD),以通过利用物理扩散模型(幅度合成)和相互作用运动诱导的相位模型(运动相综合)来综合高质量的配对训练数据。该网络仅通过100,000个合成样本进行了一次训练,从而在体内数据重建中取得了令人鼓舞的结果。比常规方法的优点包括:(a)更好的运动伪影抑制和重建稳定性; (b)对多阶段重建的杰出概括,包括多分辨率,多-B值,多型采样,多供应商和多中心; (c)七位经验丰富的医生对患有验证的患者的出色临床适应性(p <0.001)。总之,PIDD通过利用MRI物理学的力量来提出一个新颖的深度学习框架,提供了一种具有成本效益且可解释的方法,以破坏深度学习医学成像中的数据瓶颈。
Diffusion magnetic resonance imaging (MRI) is the only imaging modality for non-invasive movement detection of in vivo water molecules, with significant clinical and research applications. Diffusion weighted imaging (DWI) MRI acquired by multi-shot techniques can achieve higher resolution, better signal-to-noise ratio, and lower geometric distortion than single-shot, but suffers from inter-shot motion-induced artifacts. These artifacts cannot be removed prospectively, leading to the absence of artifact-free training labels. Thus, the potential of deep learning in multi-shot DWI reconstruction remains largely untapped. To break the training data bottleneck, here, we propose a Physics-Informed Deep DWI reconstruction method (PIDD) to synthesize high-quality paired training data by leveraging the physical diffusion model (magnitude synthesis) and inter-shot motion-induced phase model (motion phase synthesis). The network is trained only once with 100,000 synthetic samples, achieving encouraging results on multiple realistic in vivo data reconstructions. Advantages over conventional methods include: (a) Better motion artifact suppression and reconstruction stability; (b) Outstanding generalization to multi-scenario reconstructions, including multi-resolution, multi-b-value, multi-under-sampling, multi-vendor, and multi-center; (c) Excellent clinical adaptability to patients with verifications by seven experienced doctors (p<0.001). In conclusion, PIDD presents a novel deep learning framework by exploiting the power of MRI physics, providing a cost-effective and explainable way to break the data bottleneck in deep learning medical imaging.