论文标题
关于平均场变异推断的表示
On Representations of Mean-Field Variational Inference
论文作者
论文摘要
平均场变异推理(MFVI)制定将一般贝叶斯推理问题限制为产品测量的子空间。我们提出了一个分析MFVI算法的框架,该算法的灵感来自一般变化贝叶斯制剂的类似开发。我们的方法使MFVI问题可以以三种不同的方式表示:瓦斯坦斯坦空间上的梯度流,这是一种fokker-planck样方程和扩散过程。确定了严格的保证,以表明坐标上升变化推理算法的时间限制的实现在产品瓦斯汀度量空间中会产生极限的梯度流。其相关密度也获得了类似的结果,其极限由准线性部分微分方程给出。一种流行的实用算法属于此框架,该框架提供了建立融合的工具。我们希望该框架可以用来保证算法在各种新旧方法中的收敛,以解决变分的推理问题。
The mean field variational inference (MFVI) formulation restricts the general Bayesian inference problem to the subspace of product measures. We present a framework to analyze MFVI algorithms, which is inspired by a similar development for general variational Bayesian formulations. Our approach enables the MFVI problem to be represented in three different manners: a gradient flow on Wasserstein space, a system of Fokker-Planck-like equations and a diffusion process. Rigorous guarantees are established to show that a time-discretized implementation of the coordinate ascent variational inference algorithm in the product Wasserstein space of measures yields a gradient flow in the limit. A similar result is obtained for their associated densities, with the limit being given by a quasi-linear partial differential equation. A popular class of practical algorithms falls in this framework, which provides tools to establish convergence. We hope this framework could be used to guarantee convergence of algorithms in a variety of approaches, old and new, to solve variational inference problems.