论文标题

参数系统的相对Lipschitz样性质通过投影代码

Relative Lipschitz-like property of parametric systems via projectional coderivative

论文作者

Yao, Wenfang, Yang, Xiaoqi

论文摘要

本文涉及隐式映射的投影代码和分析相对Lipschitz样性质的相应应用的上限估计值。在不同的约束资格下,我们为参数系统的解决方案映射提供了投影代码的上限估计。对于仿射变化不平等的溶液映射,相对于其域中的多面体集合,在其域中的多面体设置中,获得了广义的临界面条条件。还证明了相对Lipschitz样性质与多面体多函数的局部内部血管内部性之间的等效性。对于使用$ Q_0 $ -MATRIX的线性互补问题的解决方案映射,我们通过通用的临界面条条件及其组合性质为Lipschitz样属性建立了足够且必要的条件。

This paper concerns upper estimates of the projectional coderivative of implicit mappings and corresponding applications on analyzing the relative Lipschitz-like property. Under different constraint qualifications, we provide upper estimates of the projectional coderivative for solution mappings of parametric systems. For the solution mapping of affine variational inequalities, a generalized critical face condition is obtained for sufficiency of its Lipschitz-like property relative to a polyhedral set within its domain under a constraint qualification. The equivalence between the relative Lipschitz-like property and the local inner-semicontinuity for polyhedral multifunctions is also demonstrated. For the solution mapping of linear complementarity problems with a $Q_0$-matrix, we establish a sufficient and necessary condition for the Lipschitz-like property relative to its convex domain via the generalized critical face condition and its combinatorial nature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源