论文标题

屈曲,弯曲,碰撞光束的自我排序

Self-Ordering of Buckling, Bending, Bumping Beams

论文作者

Guerra, Arman, Slim, Anja, Holmes, Douglas P., Kodio, Ousmane

论文摘要

当限制时,薄结构的集合弯曲,弯曲和撞到彼此。这种接触可以导致图案的形成:头发会在卷发中自组织; DNA链将分为细胞核。当弄皱时,纸会自身折叠,形成一个交错的床单。这种模式的形成改变了结构可以包装的密度以及系统的机械性能。目前尚不了解这些模式形成这些模式的方式以及何时形成这些模式以及包装这些结构所需的力。在这里,我们研究了在细长结构中包装的规范示例中的出现,即平行生长的弹性梁的系统。使用统计力学的实验,模拟和简单理论,我们预测了将保证全局系统秩序的梁的生长量(或等效地,等效地,是压缩量),这仅取决于系统的初始几何形状。此外,我们发现该元材料的压缩刚度和存储的弯曲能与在任何给定点上几何沮丧的光束数量成正比。我们希望这些结果能够阐明导致这些系统中模式形成的机制,并提供一种新的机械元物质,具有可调性的压缩力。

A collection of thin structures buckle, bend, and bump into each-other when confined. This contact can lead to the formation of patterns: hair will self-organize in curls; DNA strands will layer into cell nuclei; paper, when crumpled, will fold in on itself, forming a maze of interleaved sheets. This pattern formation changes how densely the structures can pack, as well as the mechanical properties of the system. How and when these patterns form, as well as the force required to pack these structures is not currently understood. Here we study the emergence of order in a canonical example of packing in slender-structures, i.e. a system of parallel growing elastic beams. Using experiments, simulations, and simple theory from statistical mechanics, we predict the amount of growth (or, equivalently, the amount of compression) of the beams that will guarantee a global system order, which depends only on the initial geometry of the system. Furthermore, we find that the compressive stiffness and stored bending energy of this meta-material is directly proportional to the number of beams that are geometrically frustrated at any given point. We expect these results to elucidate the mechanisms leading to pattern formation in these kinds of systems, and to provide a new mechanical meta-material, with a tunable resistance to compressive force.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源