论文标题

染色质组织聚合物模型中的自下而上数据集成

Bottom-up data integration in polymer models of chromatin organisation

论文作者

Zhang, Alex Chen Yi, Rosa, Angelo, Sanguinetti, Guido

论文摘要

细胞功能至关重要地取决于在细胞核紧密堆积环境中在染色质纤维上发生的复杂生化反应的精确执行。尽管有多个角度探讨此过程的大数据集可用性,但我们仍然缺乏自下而上的框架,该框架可以将生物化学的序列特异性特定性质纳入3D染色质动力学的统一模型。在这里,我们提出了SEMPER(序列增强的磁聚合物),这是一种新型的随机聚合物模型,自然结合了有关序列驱动的生化过程的观察数据,例如在染色质结构的3D模型中,例如转录因子蛋白的结合。通过引入一种用于近似贝叶斯推论的新算法,我们讨论了如何以鲁棒的方式估计生化和聚合物信号在确定染色质表观遗传态中的相对重要性,这导致了对先前模型的解释的重大修订。此外,我们表明,如果没有基因组3D结构的额外输入,我们的模型可以准确地预测核中染色质折叠的一些显着且非琐碎的构象特征。我们的工作突出了引入物理现实的统计模型来预测染色质状态的重要性,并为解释表观基因组数据的新型更系统的方法开辟了道路。

Cellular functions crucially depend on the precise execution of complex biochemical reactions taking place on the chromatin fiber in the tightly packed environment of the cell nucleus. Despite the availability of large data sets probing this process from multiple angles, we still lack a bottom-up framework which can incorporate the sequence-specific nature of biochemistry in a unified model of 3D chromatin dynamics. Here we propose SEMPER (Sequence Enhanced Magnetic PolymER), a novel stochastic polymer model which naturally incorporates observational data about sequence-driven biochemical processes, such as binding of transcription factor proteins, in a 3D model of chromatin structure. By introducing a new algorithm for approximate Bayesian inference, we discuss how to estimate in a robust manner the relative importance of biochemical vs. polymer signals in the determination of the chromatin epigenetic states which is leading to a significant revision of the interpretation of previous models. Furthermore we show that, without additional input from the genome 3D structure, our model can predict with reasonable accuracy some notable and non trivial conformational features of chromatin folding within the nucleus. Our work highlights the importance of introducing physically realistic statistical models for predicting chromatin states from epigenetic data, and opens the way to a new class of more systematic approaches to interpret epigenomic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源