论文标题

算术群的最大木材亚组

Maximal amenable subgroups of arithmetic groups

论文作者

Alekseev, Vadim, Carderi, Alessandro

论文摘要

通过在全球特征零字段上对代数组的$ s $ - 最大效果分类,我们获得了最大可观亚组的完整分类,可在相应的算术组中可相称。 futhermore,我们证明了这些相称的最大amenable子组是单数的,因此产生了最大的von neumann子类。

By classifying $S$-maximal amenable subgroups of algebraic groups over a global field of characteristic zero, we obtain a complete classification of maximal amenable subgroups up to commensurability in the respective arithmetic groups. Futhermore, we prove that these commensurably maximal amenable subgroups are singular and therefore give rise to maximal amenable von Neumann subalgebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源