论文标题

因果结构假设检验和数据生成模型

Causal Structural Hypothesis Testing and Data Generation Models

论文作者

Jiang, Jeffrey, Pooladzandi, Omead, Bhat, Sunay, Pottie, Gregory

论文摘要

因果结构先验捕获了大量的专家和领域知识,但是在测试此类先验的概括和数据综合目的方面,几乎没有研究。我们提出了一种新型的模型结构,即因果结构假设检验,可以使用非参数,结构性因果知识,并使用深层神经网络近似因果模型的功能关系。我们使用这些架构来比较结构先验,类似于假设检验,并使用故意的(非随机)训练和测试数据进行比较。广泛的模拟证明了分布外概括误差的有效性,作为因果结构的先验假设检验的代理,并提供了解释结果的统计基线。我们表明,因果结构变异假设检验的差异版本可以改善低SNR制度的性能。由于模型的简单性和低参数计数,从业者可以测试和比较小数据集上的结构性先验假设,并使用具有最佳概括能力的先验,以合成更大的,有因果关系的数据集。最后,我们在合成摆数据集上验证了我们的方法,并在现实世界创伤手术的地面层面数据集上显示了用例。

A vast amount of expert and domain knowledge is captured by causal structural priors, yet there has been little research on testing such priors for generalization and data synthesis purposes. We propose a novel model architecture, Causal Structural Hypothesis Testing, that can use nonparametric, structural causal knowledge and approximate a causal model's functional relationships using deep neural networks. We use these architectures for comparing structural priors, akin to hypothesis testing, using a deliberate (non-random) split of training and testing data. Extensive simulations demonstrate the effectiveness of out-of-distribution generalization error as a proxy for causal structural prior hypothesis testing and offers a statistical baseline for interpreting results. We show that the variational version of the architecture, Causal Structural Variational Hypothesis Testing can improve performance in low SNR regimes. Due to the simplicity and low parameter count of the models, practitioners can test and compare structural prior hypotheses on small dataset and use the priors with the best generalization capacity to synthesize much larger, causally-informed datasets. Finally, we validate our methods on a synthetic pendulum dataset, and show a use-case on a real-world trauma surgery ground-level falls dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源