论文标题
与外部网络数据的图形模型推论
Graphical model inference with external network data
论文作者
论文摘要
我们考虑了两个应用程序,我们研究了许多变量之间的依赖结构如何链接到外部网络数据。我们首先研究了社交媒体的联系与美国县Covid-19的共同发展之间的相互作用。我们下一个研究研究跨公司股票市场回报之间的依赖性与文本监管档案中经济和政策指标的相似性如何相似。这两个应用程序均通过具有外部网络数据的高斯图形模型进行建模。我们开发了尖峰和单板和图形套索框架来集成网络数据,既促进了图形模型的解释又改进了推断。目的是检测网络数据何时与图形模型相关,如果是的,则说明了如何。我们发现,在Facebook上紧密联系的县更有可能具有类似的Covid-19进化(积极的部分相关),这考虑了推动平均值的各种因素。我们还发现,股票市场回报的协会以比政策指标更强大的方式取决于经济。示例表明,在某些情况下,使用明显稀疏的图形模型,数据集成可以改善解释,统计准确性和样本外预测。
We consider two applications where we study how dependence structure between many variables is linked to external network data. We first study the interplay between social media connectedness and the co-evolution of the COVID-19 pandemic across USA counties. We next study study how the dependence between stock market returns across firms relates to similarities in economic and policy indicators from text regulatory filings. Both applications are modelled via Gaussian graphical models where one has external network data. We develop spike-and-slab and graphical LASSO frameworks to integrate the network data, both facilitating the interpretation of the graphical model and improving inference. The goal is to detect when the network data relates to the graphical model and, if so, explain how. We found that counties strongly connected on Facebook are more likely to have similar COVID-19 evolution (positive partial correlations), accounting for various factors driving the mean. We also found that the association in stock market returns depends in a stronger fashion on economic than on policy indicators. The examples show that data integration can improve interpretation, statistical accuracy, and out-of-sample prediction, in some instances using significantly sparser graphical models.