论文标题

测试群集丰度宇宙学的可能性的准确性

Testing the accuracy of likelihoods for cluster abundance cosmology

论文作者

Payerne, Constantin, Murray, Calum, Combet, Céline, Doux, Cyrille, Fumagalli, Alessandra, Penna-Lima, Mariana

论文摘要

大量的星系簇是对物质密度波动的振幅,宇宙中物质总量以及其膨胀历史的敏感探针。推断宇宙学参数的正确值和准确的不确定性需要准确了解簇丰度统计,并在似然函数中编码。在本文中,我们测试了文献中使用的簇丰度可能性的准确性,即泊松和高斯的可能性以及对高斯 - 波森化合物可能性的更完整描述。对于各种包装选择和分析设置,重复了这一点。为了评估给定可能性的准确性,这项工作将单个后方协方差与估计量的协方差比较了估计量的协方差,而从pinocchio算法获得的1000个模拟暗物质晕圈目录。我们发现,对于Rubin/LSST或类似欧几里得的调查,高斯的可能性在各种范围的binning选择中都具有强大的限制。不解释样品协方差的泊松可能性始终低估了参数的错误,即使样本量减少或仅考虑了高质量簇。我们发现使用更复杂的高斯 - 波森化合物的可能性没有任何好处,因为它的结果与高斯的可能性基本相同,但计算成本更高。最后,在这种理想的设置中,我们只注意到参数误差栏的少量增益,当时使用大量的质量 - 红移平面中的垃圾箱。

The abundance of galaxy clusters is a sensitive probe to the amplitude of matter density fluctuations, the total amount of matter in the Universe as well as its expansion history. Inferring correct values and accurate uncertainties of cosmological parameters requires accurate knowledge of cluster abundance statistics, encoded in the likelihood function. In this paper, we test the accuracy of cluster abundance likelihoods used in the literature, namely the Poisson and Gaussian likelihoods as well as the more complete description of the Gauss-Poisson Compound likelihood. This is repeated for a variety of binning choices and analysis setups. In order to evaluate the accuracy of a given likelihood, this work compares individual posterior covariances to the covariance of estimators over the 1000 simulated dark matter halo catalogs obtained from PINOCCHIO algorithm. We find that for Rubin/LSST or Euclid-like surveys the Gaussian likelihood gives robust constraints over a large range of binning choices. The Poisson likelihood, that does not account for sample covariance, always underestimates the errors on the parameters, even when the sample volume is reduced or only high-mass clusters are considered. We find no benefit in using the more complex Gauss-Poisson Compound likelihood as it gives essentially the same results as the Gaussian likelihood, but at a greater computational cost. Finally, in this ideal setup, we note only a small gain on the parameter error bars when using a large number of bins in the mass-redshift plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源