论文标题

振荡载荷下二维流体膜的粘弹性的数值分析

Numerical analysis of viscoelasticity of two-dimensional fluid membranes under oscillatory loadings

论文作者

Takeishi, Naoki, Santo, Masaya, Yokoyama, Naoto, Wada, Shigeo

论文摘要

由两个相对的磷脂单层组成的生物膜,包括所谓的脂质双层,在很大程度上负责单个细胞和病毒的双重固体液体行为。量化生物膜的机械特性,包括平面流动性的动力学,不仅可以为主动或被动细胞行为提供洞察力,而且还可以为药物输送系统的囊泡设计提供洞察力。尽管对生物膜的力学进行了大量研究,但尚未充分描述它们的动态粘弹性。因此,我们基于二维(2D)流体膜模型来量化它们的粘弹性,并在微米尺度膜区域的小振幅振荡载荷下研究这种粘弹性。我们使用由Onsager的变分原理获得的双层膜的流体动力方程,其中假定流体膜是几乎是平面双层膜。对各种振荡频率$ f $和膜张力进行仿真。我们的数值结果表明,随着频率的增加,膜特性从弹性含量为主导的状态转移到粘性。此外,以1- $ m $ m宽的加载配置文件获得的这种状态转换显示出频率在$ O(f)= 10^1-10^2 $ Hz之间,并且几乎独立于表面张力。我们讨论了基于弛豫率的粘性或弹性主导跃迁的形成机理,这些降低速率与管理方程中动态矩阵的特征值相对应。

Biomembranes consisting of two opposing phospholipid monolayers, which comprise the so-called lipid bilayer, are largely responsible for the dual solid-fluid behavior of individual cells and viruses. Quantifying the mechanical characteristics of biomembrane, including the dynamics of their in-plane fluidity, can provide insight not only into active or passive cell behaviors but also into vesicle design for drug delivery systems. Despite numerous studies on the mechanics of biomembranes, their dynamical viscoelastic properties have not yet been fully described. We thus quantify their viscoelasticity based on a two-dimensional (2D) fluid membrane model, and investigate this viscoelasticity under small amplitude oscillatory loadings in micron-scale membrane area. We use hydrodynamic equations of bilayer membranes, obtained by Onsager's variational principle, wherein the fluid membrane is assumed to be an almost planar bilayer membrane. Simulations are performed for a wide range of oscillatory frequencies $f$ and membrane tensions. Our numerical results show that as frequencies increase, membrane characteristics shift from an elastic-dominant to viscous-dominant state. Furthermore, such state transitions obtained with a 1-$μ$m-wide loading profile appear with frequencies between $O(f) = 10^1-10^2$ Hz, and almost independently of surface tensions. We discuss the formation mechanism of the viscous- or elastic-dominant transition based on relaxation rates that correspond to the eigenvalues of the dynamical matrix in the governing equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源