论文标题

关于结生育的注释II

A note on knot fertility II

论文作者

Ito, Tetsuya

论文摘要

一个结$ k $称为$(m,n)$ - 肥沃,如果每个Prime结$ k'$的交叉数小于或等于$ m $,则存在$ n $ n $ k $的$ k $的图表,这样一个人可以通过更改其过度信息来从图中获得$ k'$。我们给打结是$(m,n)$ - 肥沃的障碍。作为应用程序,我们证明了$(c(k)+f,c(k)+p)$ - 所有$ f,p $的肥沃结。我们还讨论了Seiefrt圆圈的Nubmer和最小交叉图的扭曲。

A knot $K$ is called $(m,n)$-fertile if for every prime knot $K'$ whose crossing number is less than or equal to $m$, there exists an $n$-crossing diagram of $K$ such that one can get $K'$ from the diagram by changing its over-under information. We give an obstruction for knot to be $(m,n)$-fertile. As application, we prove the finiteness of $(c(K)+f,c(K)+p)$-fertile knots for all $f,p$. We also discuss the nubmer of Seiefrt circle and writhe of minimum crossing diagrams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源