论文标题
Bergman内核功能与完全真实的Submanifold支持的措施相关的功能
Bergman kernel functions associated to measures supported on totally real submanifolds
论文作者
论文摘要
我们证明,伯格曼内核函数与在c^n中最大程度上完全实真实的submanifold k上支持的平滑度量相关联(例如,在尺寸中,k是C中的横向Jordan arcs的有限函数)。当k光滑时,我们的边界很清晰。我们将随机多项式的零零的等式分配扩展到较高的维度设置。
We prove that the Bergman kernel function associated to a smooth measure supported on a piecewise-smooth maximally totally real submanifold K in C^n is of polynomial growth (e.g, in dimension one, K is a finite union of transverse Jordan arcs in C). Our bounds are sharp when K is smooth. We give an application to equidistribution of zeros of random polynomials extending a result of Shiffman-Zelditch to the higher dimensional setting.