论文标题

基于单级检测器的半监督对象检测大腿骨折定位

Semi-supervised object detection based on single-stage detector for thighbone fracture localization

论文作者

Wei, Jinman, Yao, Jinkun, Zhanga, Guoshan, Guan, Bin, Zhang, Yueming, Wang, Shaoquan

论文摘要

大腿是支撑下半身的最大骨头。如果大腿骨折未及时治疗,它将导致终生行走。在骨科医学中,正确诊断大腿骨疾病非常重要。深度学习正在促进断裂检测技术的发展。但是,现有的计算机辅助诊断(CAD)方法BAESD在深度学习方面取决于大量手动标记的数据,并标记这些数据花费了很多时间和精力。因此,我们开发了一种具有有限标记图像数量的对象检测方法,并将其应用于大腿骨折定位。在这项工作中,我们基于单阶段检测器构建了一个半监督对象检测(SSOD)框架,其中包括三个模块:自适应困难样品面向面向的(ADSO)模块,融合框和可变形的展开编码器(Dex Encoder)。 ADSO模块将分类得分作为标签可靠性评估标准通过加权盒,融合盒旨在将类似的伪盒合并到可靠的盒子中以进行框回归,并提出了DEX编码器来增强图像增强的适应性。该实验是在大腿骨折数据集上进行的,其中包括3484个训练大腿骨折图像和358个测试大腿骨折图像。实验结果表明,该提出的方法以不同的标记数据速率(即1%,5%和10%)实现大腿骨折检测的最新AP。此外,我们使用完整的数据来实现知识蒸馏,我们的方法可实现86.2%的AP50和52.6%的AP75。

The thighbone is the largest bone supporting the lower body. If the thighbone fracture is not treated in time, it will lead to lifelong inability to walk. Correct diagnosis of thighbone disease is very important in orthopedic medicine. Deep learning is promoting the development of fracture detection technology. However, the existing computer aided diagnosis (CAD) methods baesd on deep learning rely on a large number of manually labeled data, and labeling these data costs a lot of time and energy. Therefore, we develop a object detection method with limited labeled image quantity and apply it to the thighbone fracture localization. In this work, we build a semi-supervised object detection(SSOD) framework based on single-stage detector, which including three modules: adaptive difficult sample oriented (ADSO) module, Fusion Box and deformable expand encoder (Dex encoder). ADSO module takes the classification score as the label reliability evaluation criterion by weighting, Fusion Box is designed to merge similar pseudo boxes into a reliable box for box regression and Dex encoder is proposed to enhance the adaptability of image augmentation. The experiment is conducted on the thighbone fracture dataset, which includes 3484 training thigh fracture images and 358 testing thigh fracture images. The experimental results show that the proposed method achieves the state-of-the-art AP in thighbone fracture detection at different labeled data rates, i.e. 1%, 5% and 10%. Besides, we use full data to achieve knowledge distillation, our method achieves 86.2% AP50 and 52.6% AP75.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源