论文标题

在分散体管理的微孔子中,自发微波platicon频率微栓

Spontaneous microwave platicon frequency microcomb in dispersion-managed microresonators

论文作者

Wang, Wenting, Lim, Jinkang, Vinod, Abhinav Kumar, Yu, Mingbin, Kwong, Dim-Lee, Wong, Chee Wei

论文摘要

临时稳定的光脉冲局限于由连续波激光驱动的微孔子,由于其引人入胜的特征和许多应用而引起了极大的关注。在这里,我们报告了首次以微波k波段重复率运行的正常分散色散管理微孔子中的模式锁定的Platicon频率微重栓形成的观察结果。由于避免的模式交叉引起的热控制调制背景所促进的各种Platicon结合状态模式具有常规和不规则的时间分离,因此由于非平衡和背景电磁场相互作用而导致的排斥力和有吸引力的力量之间的额外平衡,因此稳定地产生。可以通过向前和向后腔内的泵引起的脉冲脉冲的数量可以切换,并随着泵的增加而导致固定的结合状态复合物。这些实验观察结果符合我们的非线性数值模拟,其中包括避免模式跨,异常的四阶分散和质量因子光谱滤波。观察到的platicon模式锁定脉冲具有重叠的kelly边带样参数振荡的广泛光谱曲线。微栓重复速率的单侧带相位噪声在不同的模式锁定状态中的特征是与电子微波振荡器相当的。在分散管理的微孔子中实现模式锁定的能力提供了一个平台,以减少脉搏正时抖动并丰富微孔子中超快现象的探索。

Temporally stabilized optical pules, confined in microresonators driven by a continuous-wave laser, have attracted tremendous attention due to their fascinating features with many applications. Here we report the observations of mode-locked platicon frequency microcomb formation in normal dispersion dispersion-managed microresonators operating at microwave K-band repetition rate for the first time. Facilitated by the thermally controllable modulated background induced by avoided mode-crossings, various platicon bound state patterns with regular and irregular temporal separation are stably generated due to an additional balance between repulsive and attractive forces resulting from non-trivial interpulse and background electromagnetic field interactions. The number of mode-locked pulses can be switched by forward- and backward-cavity pump detuning and, with increasing pump power, result in stationary bound-state complexes. These experimental observations are in accordance with our nonlinear numerical simulations that includes avoided mode-crossing, anomalous fourth-order dispersion and quality-factor spectral filtering. The observed platicon mode-locked pulses have broad spectral profiles overlapping Kelly-sideband-like parametric oscillation. The single-sideband phase noise of microcomb repetition rate is characterized for the different mode-locked states, comparable with electronic microwave oscillators. The ability to achieve mode-locking in dispersion-managed microresonators provides a platform to reduce pulse timing jitter and enrich the exploration of ultrafast phenomena in microresonators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源