论文标题

改善乳房超声图像的分割:半自动两指针直方图拆分技术

Improving Segmentation of Breast Ultrasound Images: Semi Automatic Two Pointers Histogram Splitting Technique

论文作者

Abid, Rasheed, Alam, S. Kaisar

论文摘要

由于其噪音,斑点和伪影,乳房超声(BUS)图像中自动分割病变区域是一个挑战性的。总线图像的边缘图也无济于事,因为在大多数情况下,边缘图不会提供任何信息。几乎所有分割技术都将图像的边缘图作为其第一步,尽管有一些算法也试图避免边缘映射。从理论上改善乳房超声图像的边缘图可以提高自动分割的机会,从而更加精确。在本文中,我们提出了一种使用两个指针的半自动直方图拆分技术。在这里,用户只需要选择两个最初猜测的点,该点表示感兴趣的区域(ROI)。该方法将自动研究内部直方图,并使用两个指针将其拆分。与使用相同算法和相同初始化的常规分割相比,输出总线图像改进了边缘图,最终将其分割更好。此外,我们进一步处理了边缘图以具有更少的边缘像素与面积比,从而提高了均匀性和将来易于分割的机会。

Automatically segmenting lesion area in breast ultrasound (BUS) images is a challenging one due to its noise, speckle and artifacts. Edge-map of BUS images also does not help because in most cases the edge-map gives no information whatsoever. Almost all segmentation technique takes the edge-map of the image as its first step, though there are a few algorithms that try to avoid edge-maps as well. Improving the edge-map of breast ultrasound images theoretically improves the chances of automatic segmentation to be more precise. In this paper, we propose a semi-automatic technique of histogram splitting using two pointers. Here the user only has to select two initially guessed points denoting a circle on the region of interest (ROI). The method will automatically study the internal histogram and split it using two pointers. The output BUS image has improved edge-map and ultimately the segmentation on it is better compared to regular segmentation using same algorithm and same initialization. Also, we further processed the edge-map to have less edge-pixels to area ratio, improving the homogeneity and the chances of easy segmentation in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源